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EVOLUTION OF THE NUCLEON STRUCTURE
IN LIGHT NUCLEI

V.V.Burov, A.V.Molochkov, G.I.Smirnov

The evolution of the EMC effect as a function of atomic mass A is considered for the first
time for the lightest nuclei, D, BHQ and, *He, with an approach based on the Bethe—-Salpeter
formalism. We show that the pattern of the oscillation of the ratio rA(x) = FZA / FZN(D ) with

respect to the line rA(x) =1 varies with A, unlike the pattern for nuclei with masses A > 4,
where only the amplitude of the oscillation changes. It is found that the shape of the structure

function distortions, which is typical for metals, is being reached in *He.
The investigation has been performed at the Bogoliubov Laboratory of Theoretical Physics,
JINR.
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Spomiouns apdexra EMC xak dyHKuMs aTOMHOM Macchl A BNEpBbIE paccMOTpeHa s
nerdaifiinx sgep D, He u “He 8 paMKax eAHHOro NOAXO0A], B OCHOBE KOTOpPOro — (OpMaTH3M
Bere-Connurepa. [Mokasano, uto dopma ocumwmnsunu r4(x) = FZA / FZN @) orHocuTenbHO

unnn rAx) =1 npeobpa3syeTcs ¢ pOCTOM A, OTIMY@iCh TEM CaMbiM OT Ciyyas ¢ SApPaMH
A > 4, r1e HIMEHAETCS TONBKO aMIUTHTYa OCLUWUIALUMH. TTonydeHo, YTo THIHYHAS L1 MeTal-

708 hopMa HCK@XeHHH CTPyKTypHO# dyHKIIMH TOCTHraeTCH B aape ~He.
Pa6ota binonnena s JlaGoparopuu TeopetHueckoii dusuku um.H.H.BoromoGosa OHUSIH.

Strictly speaking, the EMC effect, first observed as a distortion of the free nucleon
structure function in an iron nucleus [1], is rather the phenomenon of differences between

the deuteron FZD(x) and helium F;He(x) structure functions. Indeed, as demonstrated in
[2,3], well established by the experiments of SLAC [4] and NMC [5] the oscillation pattern
of the ratio r(x) = F;HC/FZD in the range x < 0.9 is retained in heavier nuclei. The pattern
of the oscillations for nuclei with masses A >4 is fixed by the positions of the three
cross-over points x;,i = 1-3, in which rdx) =1 independently of A {3]. The evolution of
the EMC effect in the range of masses from A = 4 to A ~ 200 manifests itself in the increase
of the oscillation amplitude, Emc = 1 - r‘ﬁm, by a factor of ~ 3. It is well understood as a
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nuclear density effect if the surface nucleons are excluded from consideration. There does
not exist any data on the EMC effect in the range of A < 4. Most challenging therefore is
to find how the effect evolves in the range of the lightest nuclear masses,

P o rt 3w o rA=4m).
Below we perform derivations of the relative changes in the nuclear structure function
F;(x) with respect to the isoscalar nucleon one, F;v (x)= % (sz =)+ F2" (x)), where p and n

denote the free proton and the free neutron respectively. On the other hand, the comparison
with experimental data can be done only in terms of rA(x), obtained with the deuteron
structure function FZD (x) as a reference. Therefore our final results will be presented for
both cases. In the considered range of x (0.3 < x < 0.9) the experiments (see Ref. 4) are
consistent with no Q2 dependence of rA(x). We perform numerical calculations for the
fixed 0% = 10 GeVZ.

In the present paper, we consider a model independent calculation of F2A(x). Our

approach originates from the Bethe—Salpeter formalism {6], which allows one to treat
nuclear binding effects by using general properties of nucleon Green functions. A basic
assumption which dictates the entire approximation is that the nuclear fragments have a
small relative energy. It allows one, as has been shown previously {7], to derive the deute-
ron structure function in the form:

stk ky\ Mp-2E dF)x)
e L e

¥(k), 1)

where E is the on-mass-shell nucleon energy EZ=K?+m’ and k is the relative four

momentum of the bound nucleons, MD is the mass of a deuteron. The nucleon Bjorken

variable is defined as Xy =xpm /(E - k;). The function ‘Pz(k) is an analog of the three

dimensional momentum distribution and is directly related to the Bethe-Salpeter vertex
function for the deuteron l"D(P, k):

2
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Expression (1) shows that the relative time dependence of the amplitude of lepton deep
inelastic scattering (DIS) off a bound nucleon results in a depletion of the ratio FZD / FZN for

0.2 <x < 0.7. In this paper we briefly describe the extension of this approach for light
nuclei, A = 3, 4,
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Using the unitarity condition one can relate the hadronic part of the DIS amplitude
(hadronic tensor) with the forward Compton scattering amplitude,

A _1 A
WLLV(P’ q) - zn Im TLIV(P’ q)r (3)
which is defined as a product of electromagnetic currents averaged over nuclear states,
TAP, @) =i [ d*xe® (Al TU, () T 0))]4) @

Starting from the field theory framework one can define the matrix element in terms of
solutions of the n-nucleon Bethe-Salpeter equation and n-nucleon Green functions with
insertion of the T-product of electromagnetic currents:

d*%,  d% _ 4% 4%
n-1 1 n

emt T ent ent T ent

-1 =
TP, kpes k) S, Pk k)X

AP, 9) =]

X Gy, l)W(q; Pokppky okl kS, (K] k) VTP, ke k). (5)

The Bethe-Salpeter vertex function I'(P, kl,..., kn_ 1) satisfies the homogeneous Bethe-Sal-

peter equation

d%  d%, _,
TP, kponk, ) == [ — .. —2=by
2n) (2m)
X GoP koo k] v K, ) S, (B sk, _ YTk k! ). (6)

Here kl. are Jacoby relative momenta of the nucleons inside a nucleus, and P is the total
momentum of the nucleus. The Sy, (P ki,..., k’:_ }) is a direct product of n nucleons pro-
pagators. The Gzn(P' kl,..., k
leon Green function.

All irreducible interaction corrections to the imaginary part of the Compton amplitude

are suppressed by powers of 1 /(- qz) [7]. This justifies consideration of the zeroth order
term of G

w— 1 K=<k, _ ) term denotes the irreducible truncated n-nuc-

2An+ I)W:
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X GZ(n+ ”pv(q, P, kl""’ kn_ ) S2n(P’ kl""’ kn_ P T2, kpveos kn_ ) )]
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where the Green function G (O)Z(n +1 is defined via the truncated nucleon Compton ampli-
[

tude G‘mv(q; P, ki):

© : _
Gom+ 1)uv(q, Pokpynk )=

- . -1
= 2 Gy (@ P )® S, "~ ke ki ki s k). (8)
!

Substituting this expression into Eq.(7) one could get the Compton amplitude of a nucleus
in terms of the nucleon one:

. d%, d%,_, _ 5
T P, qg)=)———... I'(P, k... k) S(P, k)G, (q;P, k)SP, k)®
[13% (2704 (27!)4 1 n—1 - i’ T4nv i i
® Sy Bk ki ki ek TP Kk ). ©)

However, unlike the deuteron case, where singularities in the Bethe-Salpeter vertex func-
tion can be neglected, in this case there are singularities connected with nucleon-nucleon
bound states, which lie in the range of low relative momenta. Having obtained exact solu-
tions of the Bethe—Salpeter equation one could obtain the Compton amplitude in terms of
the nucleon one. Presently there are no solutions for Eq.(6) with n > 3, so we investigate a
possibility of expressing the nuclear amplitude in terms of amplitudes of the physical
nuclear fragments and three dimensional momentum distributions. To do this we have to
remove the singularities explicitly.

One can remove the singularities by introducing the «bare» BS vertex function ¥, which
is regular with respect to the relative nucleon momenta:

Jar“kl' d_
TP, ko k) =- X
1 n-1 (27!)4 (21!'.)4

X GPy ks by i Koo k! ) Sy (P k? VWP K k). (10)

In case of *He we have a pole in G, connected with a bound deuteron and nucleon-nucleon
continuous spectrum 8y

D (2P TD(2P ,
r (3 +k,k,]r (3 +k,kl)

2P 2 2
[—3‘+k) -M,

+g4(2—P+k, kl,k"]. (1

G
3

4

2p A
[—3—+k,kl,klj—

For “He one has additionally the 3He and *H poles. For example, for the neutron-proton-
proton Green function one has the “He pole and three-nucleon continuous spectrum 8
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Gé(g+kk K, ky, k]
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Substitution of these expressions into Eq.(7) gives T:v for 3He, and by applying the unita-

rity condition we find corresponding expression for the hadronic tensor:
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Assuming small relative energy of nuclear fragments one can integrate this expression
over the zeroth component of different fragments relative momenta and obtain the 3’He,

3H, and *He hadronic tensors respectively in terms of physical amplitudes of the fragments.
Using the projection operator 8,y oOne gets

11m #'w N(A)(P q=-= FN(A)( )-
0w

Introducing now Bjorken variables x, = L and x,, = ﬁ— , we find FA for *He and

AT 2P, N2,
3H in the form:
s % [E, ks E -k
PGy )= [ 4K B Py 22 pP )

H° @ny’® P D
}Hc P 3l-lc D
% X ) + % x 4 Gp) ®° (k) (13)
E, P dx, E, "D dx, He'
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and for *He in the form:
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where AI’:,= -M,+E, + E, | is the binding energy of the corresponding nuclear frag-
ment. The three-dimensional momentum distributions (Dﬁ(k) are defined via the «bare»

Bethe—Salpeter vertex functions. For example for 3He one has:

mM d* d%;
o (k) = P Z{I y ;7“6(P,k,kl)sz[ii+k,kl)x
He 4EEM, My ~E, ~Ep?*|" em* 2n)
p( 2P T+ 2P , 2P ,
x T [ ; +k,kl]l“ [ T kK ]sz[ . +k,kl)®
3
® (X, (k) a3 Y H(P, &, k," , (16)
s ko =k,
where ky = 3" Ep. Since presently there are no realistic solutions of the Bethe-Salpeter

4
equation for a bound system of three or more nucleons, one has to use phenomenological

momentum distributions. It is reasonable to assume that the momentum distributions in
Egs.(13), (14), and (15) can be related with the distributions extracted from experimental data.
In the numerical calculations we make use of the distributions available from [8] and [9].

The obtained result reduces to the one obtained within the x-rescaling model [10] and
for A = 3 becomes:
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where €= ApHc has the meaning of a nucleon (deuteron) separation energy and

3
PP/ He(y &) are the >He spectral functions for a bound proton (deuteron):

3 E -
pDY/ e, o [ ATk g2 g M _ D "3 s _
5 me=] Pk A B »o (y - ]8(8 E, + Ep— M5 ).

Input structure functions Fz”(")(x) are introduced via parameterizations based on the
measurements of the proton and the deuteron structure functions by DIS experiments. We
used the most recent parameterization of Fz”(x, Q2) found in [11] and fixed the value of

02 to 10 GeVZ. The structure function F)(x) is evaluated from FJ(x) and from the ratio
F,}(x)/ FJ(x) determined in [12]. We have verified that the uncertainties in sz(")(x) are

suppressed in the obtained ratio rA(x) and thus can be neglected in the considered kinematic
range.
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Fig.1. (a) The ratio of the nuclear structure function FzA(x) to the isoscalar
nucleon one FZN (x). (b) The ratio of the nuclear structure function FZA(x) to the
deuteron structure function FZD (x) (A = 4) and to the combination of structure
functions (2F2D(x) + Fz"(x))/3 (A = 3). The dashed curve in Fig.(a) shows the

result of calculations, described in the text, for A = 2. The results for A = 3 and
A = 4 are shown with the solid curves
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Fig.2. The ratio of the *He structure function FZHC(x) to the

deuteron structure function F2D (x). Results of calculations are

shown with the solid curve. The data are from Ref. 4 (filled
circles) and Ref. 5 (empty circles)

F\(2)/ FP ()

The results of the numerical calculations, which
show how the free nucleon structure function

FZN(x) (A =1) evolves to the deuteron (A =2) and
helium (A = 3 and 4) structure functions, are presented
in Fig.1(a). The evolution, which starts from F2D (x), is

0.8 ;
0 02 04 06 08 X1 shown in Fig.1(b). Contrary to what is observed for

nuclei with masses A > 4, the pattern of the oscillation

of r (x) changes its shape in the range of A < 4. The rate at which the changes occur is
consistent with the fast buildup of the short range binding forces.

We compare our results for the ratio F2 &)/ F2 (x) with the available data from [4,5]
in Fig.2. The position of the cross-over point, obtained from our calculations as x3=0.919,
is in reasonable agreement with the extrapolated data. On the other hand, the corresponding
point for A = 3, Xy = 0.855, falls within the interval 0.84—0.86, which is where the ratios

rA(x) (A > 4) cross the line rd=1 (cf. Ref. 4). This means that the pattern of the EMC
effect observed in such dense nuclei as metals is being reached at A = 3. The effect of
saturation of binding forces in light nuclei is shown illustratively in Fig.3 by comparing our

results for SHe with the experimental data obtained on iron. The larger value of xy at

A = 4 must be related with the anomalous binding energy of ‘He.
It is important to note the following. The expression (1) shows that the integral

I
1= ] & @Fpe ~ 2P (),
0

which is generally used for the experimental tests of the Gottfried sum rule (cf. Ref. 13),

is equal to the Gottfried sum integral to within a correction proportional to FZN(x =0):

1
dx n <MD N ZFD)D
=£ ~ (Fy(x) - F)'(x)) - Z_m— FZN(X =0).

Apparently, such tests cannot be performed rigorously because the value of FZN (x)atx=0

is unknown. On the other hand, if one uses Eqs.(13) and (14) to calculate the integral

1
3 3
1= % F, ") - F, ),
0
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Fig.3. The ratio of the nuclear structure function FzA(x) to 14
the deuteron structure function F2D (x). Results of calcu- /;2\ 13
lations for 3He, described in the text, are shown with the D\-;
dotted curve. The data obtained on iron are from Ref. 4 L\H 1.2
(filled circles) and Ref. 14 (empty circles). The data ’;3\
points are approximated with the solid curve ;:: 1.1
<
. . 1
one sees that the binding corrections cancel and
the integral I is equal to the Gottfried sum. An 0.9
experiment, which used 3He and 3H targets would
therefore be able to verify the Gottfried sum rule 0.8 - ¢
independently of the model uncertainties in the L
binding corrections. 07 L1t ot 1t
In conclusion, the method for the model-free 0 02 04 06 08 1
calculations of the evolution of the structure func- X

tions in the lightest nuclei has been developed as
the extension of an approach based on the Bethe-Salpeter formalism. The method allows

one to express FZA (x) in terms of structure functions of nuclear fragments and three-dimen-

sional momentum distributions. As a result, FZA (x) have been evaluated numerically without
finding solutions of Egs. (6) and (10).

The obtained pattern of distortions of the nucleon structure function proves that the
EMC effect in the lightest nuclei, D, 3'He, and 4He, is basically the manifestation of the
short range binding forces in the nucleon parton distributions. The quantitative predictions
for SHe and “He nuclei, which have to be verified in future experiments at HERA or
CEBAF, indicate that the EMC effect in heavy nuclei can be naturally understood as distor-
tions of the nucleon parton distributions in 3He, which are modified by the nuclear density
effects.

Finally, the obtained results prove that in the EMC effect range (0.3 < x < 0.9) the

two-nucleon interactions can be considered as the dominant mechanism for the description
of the nuclear binding forces.
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